
Journal of Statistical Physics, Vol. 39, Nos. 5/6, 1985 

Solitons in Josephson Junctions: An Overview 

P. S. Lomdahl  I 

The dynamics of the Josephson tunnel junction is approximately described by a 
perturbed sine-Gordon equation. The Josephson tunnel junction is thus a con- 
venient experimental solid state device for the study of solitons and solitonlike 
phenomena. The physical manifestation of the soliton is a Propagating magnetic 
flux quantum (~0 = h/2e = 2.064 x 10 ~5 V sec). Basic properties of the soliton 
and its relation to observable experimental quantities (zero field steps, 
microwave radiation, etc.) are reviewed. Recent direct measurements of the 
actual soliton profile are also mentioned. 

KEY WORDS: Solitons; nonlinear waves; Josephson junctions; quasi one- 
dimensional systems. 

1. I N T R O D U C T I O N  

Josephson junctions devices have over the last ten years proven to be one 
of the most successful testing grounds for nonlinear wave theory. More 
specifically, a model based on the perturbed sine-Gordon equation has 
been shown to describe t h e  internal dynamics of the junction very 
accurately. In this introductory overview I will review the model and show 
how solitons manifest themselves and how they relate to experimentally 
observable quantities. Focus will be on the basic properties and, rather 
than trying to review the very extensive literature on the subject, I will give 
reference to key papers which can lead the interested reader into more 
specialized aspects. 

The outline of the paper is as follows: In Section 2 the model is derived 
and in Section 3 contact is made with experiments. Here recent direct 
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measurements of the soliton profile are also mentioned. Finally in Section 4 
a brief conclusion and an outlook is given. 

2. M O D E L  E Q U A T I O N S  

Josephson tunnel junctions come in different geometries--here I will 
focus on the so-called overlap type. Various other geometries are possible 
(see, e.g., Ref. 1, which is also a good introductory textbook to the field); 
the model equations will, however, turn out to be very similar to those 
derived below. 

An overlap geometry Josephson tunnel junction consists of two super- 
conducting metal layers separated by a thin insulating oxide layer of 
uniform thickness which is small enough to permit quantum mechanical 
tunneling of electrons. The geometry is shown in Fig. 1. The tunneling 
supercurrent is described by the two basic Josephson equations 

J = Js sin q~ (la) 

0~0 2e 
- V ( l b )  

St h 

where ~p = ~0(x, y, t) is the difference between the phases of the order 
parameters of the two superconductors, j = j ( x ,  y, t) is the Josephson 
current crossing the insulating layer per unit area, j j  being the maximum 

to 

t o < <  A L < <  tf  < <  w < <  A~ < L 

10  -9 5 x 1 0  "s 2 x 1 0  -7 5 x 1 0  -s 2 x 1 0  -4 10  -3 [m]  

Fig. 1. Josephson tunnel junction of overlap type. 



Solitons in Josephson Junctions 553 

supercurrent density. The voltage across the insulating barrier is given by 
V= V(x, y, t), the constants e and h are the charge of the electron and 
Planck's constant divided by 2zt, respectively. The surface current density 
i =  i(x, y, t) is given by 

1 h 
i = H x n = - -  ( B x ,  By) x n = Vcp (2 )  

/Zo 2ed/~o 

Here d =  22c + to is the magnetic thickness of the junction, 2L is the Lon- 
don penetration depth, #o is the permeability of free space, and Bx(By ) is 
the x component (y component) of B. The unit vector normal to the sur- 
face is denoted n. 

The current density through the oxide layer is given by 

h hC 
Jz = JJ sin ~0 +~-~--~ ~ot + ~ e  ~0,, (3) 

The second term on the right-hand side represents dissipative effects due to 
quasiparticle tunneling, R being an effective normal resistance--in fact it is 
just Ohm's law. The third term represents the energy stored in the dielectric 
barrier (i.e., a displacement current). 

From now on it is convenient to measure all the length x, y, to, 2L, ty, 
W, L, in units of the Josephson penetration depth 2s=(h/2ltoedjs) m and 
time t in units of the reciprocal plasma frequency co71, where Ogp = 
(2eje/hC) 1/2. Finally, the equation of continuity 

V ' i - j ~ = 0  (4) 

substituted in (3) and using (2) yields the two-dimensional sine-Gordon 
equation 

qPxx "]- ~Oyy -~- sin q~ + ~o, + ~o, (5) 

where e = (h/2eR) ogp = 1/(~c) 1/2, ~c is the usual McCumber parameter. 
Energy input to the system is provided from the magnetic fields 

induced at the boundaries. In the following the boundary conditions are 
determined and it is shown how the two-dimensional equation is reduced 
to one dimension. 

The magnetic field along y = +w/2 is approximately given by 

( w )  , w 
H x, + ~ - , t  = + ,,~ (6a) 

- - 2 ( L + t f ) 2 s j s  +-rl-2 
o r  

~o~ x, + g ,  t = +,7-~ = _+~ (6b) 
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for IxJ <.L/2, where 
I 

= Lwjs (7) 

is the uniform bias current through the barrier. From Ampere's law it 
follows that 

g +_-2 ,y , t  ~ 0  (8a) 

o r  (L)  ~ox + -~ , y, t ~ 0  (8b) 

Thus in the two-dimensional case the energy providing mechanism is the 
magnetic field via the boundary condition (8). 

Now, a solution of the form 

q~(x, y, t) = q~l(x, t) -k- q92(y), ~o2'~ 1 (9) 

reduces (5) and (6) to 

~o 1.xx = sin ~o~ + ~Ol,t-  q + ~o1,. (10) 

which is the perturbed one-dimensional sine-Gordon equation if 

= 2 ' 2 41 (11) 

Thus for ~w2/8 ~ 1 the overlap geometry junction can be modeled by the 
damped-driven one-dimensional sine-Gordon equation. Note that q in this 
approximation might depend on x. 

Without the perturbing damping and driving terms (10) has the famed 
kink/antikink solutions: 

~p+(x, t ) = 4 t a n  l [ + _ ( X - X o - C t ) / ( 1 - c 2 )  1/2] (12) 

These topological solitons will exist even in the presence of damping and 
driving as represented by (10). The driving force will accelerate the solitons 
to a velocity determined by balance of the damping. This behavior can be 
predicted by perturbation theory (2) where the perturbation takes place 
around the single soliton (12). The limiting velocity is given by 

coo = 1 + (13) 
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The soliton in a Josephson junction is thus a 2re jump in the phase dif- 
ference (q~) across the insulating barrier which separates the two supercon- 
ductors. Expressed in another way: It is a current loo~-composed of sur- 
face current and tunneling supercurrent--connecting the two surface layers 
via the barrier. This current loop encompases one quantum of magnetic 
flux: q~o=h/2e=2.064x 10 15Vsec--and the soliton is therefore often 
called a fluxon. 

Before moving on to the experimental manifestation of the solitons, it 
is worth mentioning that the Josephson junction model also can be for- 
mulated in terms of an electric equivalence diagram. (3) In this formulation 
the model (10) is often refered to as the resistively-shunted-junction (RSJ) 
model. 

3. E X P E R I M E N T A L  M A N I F E S T A T I O N  

Fulton and Dynes (4~ suggested in 1973 that the Josephson junction 
could support the resonant propagation of soltions trapped in the junction. 
The moving soliton is accompanied by a voltage pulse [~q)t from (lb)] 
which can be detected at either end of the junction. The dc manifestation of 
the motion is a sequence of equidistantly spaced branches in the 
current-voltage characteristics of the junction. These near-constant voltage 
branches which were first reported by Chen, Finnegan, and Langenberg (5) 
are known as zero field steps (ZFS) because they occur in the absence of an 
external magnetic field. To see that the resonant motion of a soliton gives 
rise to a constant dc voltage, consider a single kink moving with velocity c 
in a junction of length L. After one full periode T = 2L/c the soliton is back 
where it started, having been reflected at the boundaries where (Px=0 
according to (8b). The phase ~0 has thus been changed by 4re in a period T. 
If there are N kinks in the junction the phase change will be 4Nrr. The dc 
voltage is now found by integration of (lb) over one period T: 

1 f 1 2e -~ (ptdt---~[q~(T)-q)(O)] =--~ Vac (14) 

from which it follows that 

4Nn h Nc I Z  

q~ o (15) v a c - - - ~  2e L 

Thus for a given value of bias current q, the dc voltage is given via (13) and 
(15). In fact, elimination of c from (13) and (15) gives an approximate 
analytic expression for the first ZFS. 
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The detailed dynamics of soltions in Josephson tunnel junctions have 
been investigated theoretically by means of analytic methodes, (6-s) pertur- 
bation analysis, (2'9'1~ and numerical simulations. (n-14) An actual com- 
parison between experimental results and numerical simulations was done 
in Ref. 14, while perturbation theory was compared with experiments in 
Ref. i0. Many of these results are reviewed in Ref. 15. The bulk of this work 
has shown that the perturbed sine-Gordon equation (10) is indeed a very 
good model describing the internal dynamics of a Josephson junction. In 
Fig. 2 the voltage-current characteristic of a junction of length L = 6 is 
shown. The full lines are experimental results for the first three 
ZFS's--numerical results are indicated by circles. Excellent agreement is 
observed. In Fig. 3 the behavior on the first ZFS (N = 1) is shown. A single 
soliton travels back and forth on the junction giving rise to a periodic 
voltage-pulse train of frequency f l  = c/2L. On the Nth ZFS N soltions are 
involved and N pulses are produced within one period T. The detailed fre- 
quency spectrum of the voltage will depend on the distribution of the N 
pulses within the period. An example from the third ZFS is shown in Fig. 4. 
Figure 3 and 4 were obtained by numerical solution of a perturbed sine- 
Gordon equation slightly more general than (10) .  (14) A comparison 
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0 .0  2 .5  5 .0  7 .5  10 .0  

Fig. 2. The dc voltage vs. the applied bias current (~/) for a Josephson junction of length 
L = 6. The figure shows the first three ZFS's. Circles indicate numerical results and full lines 
represent the experimental results. 
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Fig. 3. Approximately one period of oscillation on the first ZFS, shown in terms of q~x(X, t) 
for ten time units. The inset shows ~0t(l, t) for 50 time units. The length of the junction was 
L~2l=6. The figure was obtained by numerical solution of a perturbed sine-Gordon 
equation (~4~ with c~ = 0.05 and r/= 0.35. 

between the measured and calculated power emission at the fundamental 
frequency f l  is shown in Fig. 5 versus the bias current. The calculated out- 
put power is determined through the relation P = V2(fl)/2Rc, where the 
load resistance R L has been used as a fitting parameter. Using the value 
indicated by the arrow gives R L = 17kO, which indicates that the open-cir- 
cuit boundary condition (8) is a good approximation.  In Fig. 5 the solid 
curves are the numerical results and the points indicate experimental obser- 
vations. The agreement is good for the first ZFS but gets worse for the 
second and third ZFS. However, the qualitative behavior and the relative 
power levels are well reproduced. 

When an external magnetic field is imposed on the junction in the y 
direction the boundary condition (8) is no longer valid. Instead Eq. (8) will 
read 

q~ x +__ ~ , y ,  t ~ ++_ fl (16) 
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Fig. 4. Approximately one period of oscillation of the third ZFS, shown in terms of ~0x(x, t) 
for ten time units. The three solitons travel 'bunched' together as one entity. The inset shows 
q~(l, t) for 50 time units. The length of the junction was L ~ 2l = 6. The figure was obtained by 
numerical solution of a perturbed sine-Gordon equation (a4) with c~ = 0.05 and t/= 0.35. 

where/~ represents the magni tude  of the external magnetic  field. With this 
type of  boundary  condit ion a simple reflection of  the soliton is no longer 
guaranteed. Fo r  /~ above a certain value, numerical  studies (17) show that  
solitons are annihilated into plasma oscillations at one end of  the junction.  
These small-amplitude oscillations can then travel back to the other  end of 
the junct ion and trigger a new soliton. The dc manifestat ion of  this 
phenomena  is, like for zero magnetic  field, steps in the vol tage-current  
characteristic. These s t e p s - -known  as Fiske s teps- - thus  also have an 
explanat ion in terms of sotiton solutions to the per turbed s ine-Gordon 
equat ion (10). Actual compar ison  with experimental measurements  turns 
out  to be very favorable too. ~18) 

The signal carried by a soliton in a Josephson junct ion is very 
weak - - i t  is essentially given by the magni tude  of  the flux quan tum ~b o. 
This means that  in order  to detect a detailed wave form a rise-time-sen- 
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Fig. 5. Microwave power emitted from a short junction ( L = 2 )  at the fundamental fre- 
quency f l .  N =  1, 2, and 3 indicates the first, second, and third ZFS, respectively. The discrete 
points are experimental results and the solid lines are numerical results. The arrow shows the 
power value used as a fitting parameter (see text). 

sitivity product of less than 10 15 is needed for the measurement system. 
Recently a Japanese group reached this limit and observed for the first time 
the actual profile of a soliton propagating in a Josephson junction. (19'2~ An 
input pulse with a wave form shown in Fig. 6a was applied at one end of a 
junction of the overlap type (Fig. 1). The output pulse detected at the other 
end of the junction is shown in Fig. 6b for various degrees of attenuation of 
the input pulse height. The number of solitons is seen to increase from one 
to four as the attenuation is decreased from - 1 4  to - 4 d B .  These 
measurements have also been analyzed via the perturbed sine-Gordon 
equation (10), and again the agreement between experiment and model is 
very good. 

4. C O N C L U D I N G  R E M A R K S  

The theoretical studies of long Josephson tunnel junction dynamics 
mentioned in the previous section have all been done within the framework 
of the one-dimensional perturbed sine-Gordon equation. Detailed c o r n -  



560 Lomdahl 

20G 
l=, 
E 

co IO0 
o 

0 ~> 
0 

Input Woveform 

I,I Time ( n sec) 

f ~ -14d8 

V- ':,02 

o ~ v ~ T -0545 
I 2 3 4 Odll-21Omv 

Ib) Delay Time (n sec) 

Fig. 6. Experimentally measured soliton wave form: (a) input at 0 dB; (b) output profiles as 
a function of input pulse height for a fixed bias current (7 = 0.545). The figure is from Ref. 20. 

parison with experimental results has verified that this model provides a 
very good description of the internal dynamics. Most experimental results 
indeed seem to be insensitive to the width of the junction. This is 
understandable when (11) is considered. Actual simulations ~21'=) on the full 
two-dimensional model (5) have confirmed the assumptions leading to (10) 
and clarified the range of bias current and width values for which ZFS's are 
to be expected. 

Because Josephson tunnel junctions have proven to be well described 
by one of the standard soliton equations they provide a very tractable 
testing ground for perturbed soliton studies. It will be interesting to see if 
recent theoretical studies <23) on the ac-driven sine-Gordon equation show- 
ing chaos, coherence, and interesting pattern selection rules can indeed be 
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observed experimentally. Josephson junctions can in this way provide feed- 
back to our overall understanding on nonlinear phenomena, this detailed 
understanding of the junctions' nonlinear response should in turn make it 
possible to construct better design criteria for a complete integrated 
Josephson amplifier system, for example. (1'8) 
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